This function evaluates the \(\sigma\)-significativity of an agreement value \(c\) in either \(\mathcal{M}_{n,m}\) or \(\mathcal{P}_{n}\) depending on the call parameters.
When m
is a natural number, the \(\sigma\)-significativity of \(c\)
in \(\mathcal{M}_{n,m}\) is evaluated. If number_of_samples
is
a natural number, the significativity is estimated by using the Monte
Carlo method. Otherwise, the computation considers all the
\(n \times n\)-confusion matrices.
When instead m
is set to NULL
, the function uses the Monte Carlo
method to estimate the \(\sigma\)-significativity of \(c\) in
\(\mathcal{P}_{n}\).
Arguments
- sigma
An agreement measure.
- n
The number of rows/columns of the confusion matrix.
- m
The sum of the confusion matrix elements. When set to
NULL
, the function estimate the \(\sigma\)-significativity of \(c\) in \(\mathcal{P}_{n}\) (default:NULL
).- number_of_samples
The number of samples used to evaluate the significativity by using Monte Carlo method (default: 10000).
Value
When m
is a natural number, the function returns the
\(\sigma\)-significativity of \(c\) in \(\mathcal{M}_{n,m}\).
If instead m
is set to NULL
, the \(\sigma\)-significativity
of \(c\) in \(\mathcal{P}_{n}\).
Examples
# evaluate kappa-significativity of 0.5 in M_{2,5} with 10000 samples
significativity(cohen_kappa, 0.5, 2, 5)
#> [1] 0.7904
# evaluate kappa-significativity of 0.5 in M_{2,5} with 1000 samples
significativity(cohen_kappa, 0.5, 2, 5, number_of_samples = 1000)
#> [1] 0.778
# exactly compute kappa-significativity of 0.5 in M_{2,5}
significativity(cohen_kappa, 0.5, 2, 5, number_of_samples = NULL)
#> [1] 0.7857143
# evaluate kappa-significativity of 0.5 in P_{2} with 1000 samples
significativity(cohen_kappa, 0.5, 2, number_of_samples = 1000)
#> [1] 0.886
# evaluate kappa-significativity of 0.5 in P_{2} with 10000 samples
significativity(cohen_kappa, 0.5, 2)
#> [1] 0.897
# successive calls to Monte Carlo methods may produce different results
significativity(cohen_kappa, 0.5, 2)
#> [1] 0.8982
# setting the random seed before the call guarantee repeatability
set.seed(1)
significativity(cohen_kappa, 0.5, 2)
#> [1] 0.9012
set.seed(1)
significativity(cohen_kappa, 0.5, 2)
#> [1] 0.9012